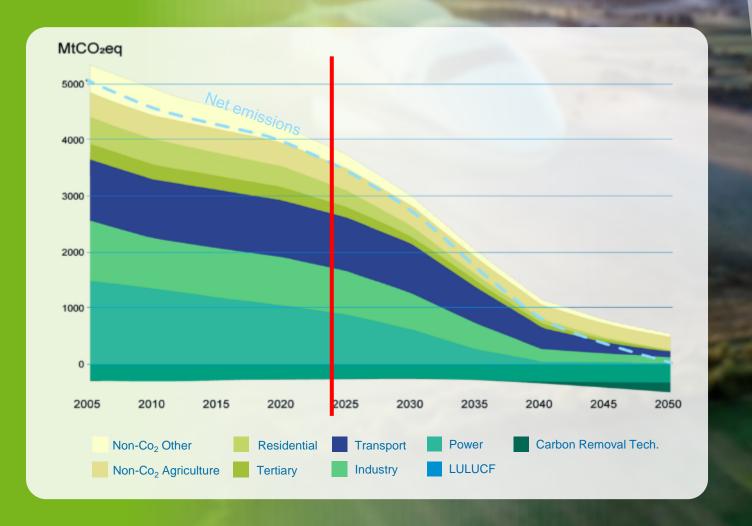


Clean Aviation: The Ticket to Zero-Emission Flight

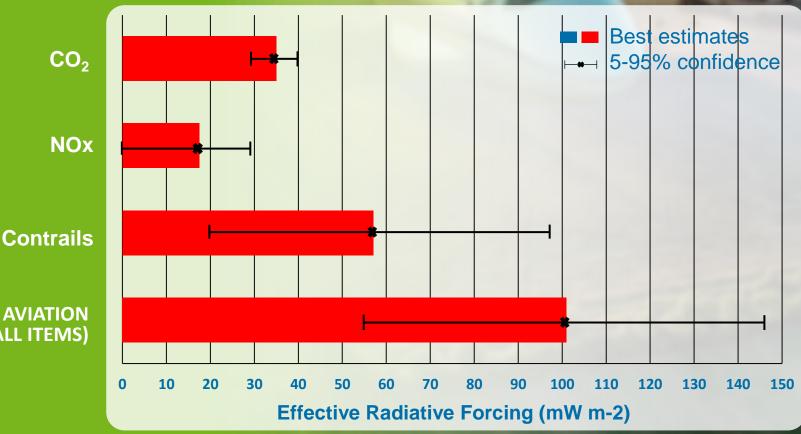
Sébastien **DUBOIS**

50th ANNIVERSARY GARTEUR | 5 OCTOBER 2023 | POZZUOLI, ITALY


Head of Programme Development and Communications

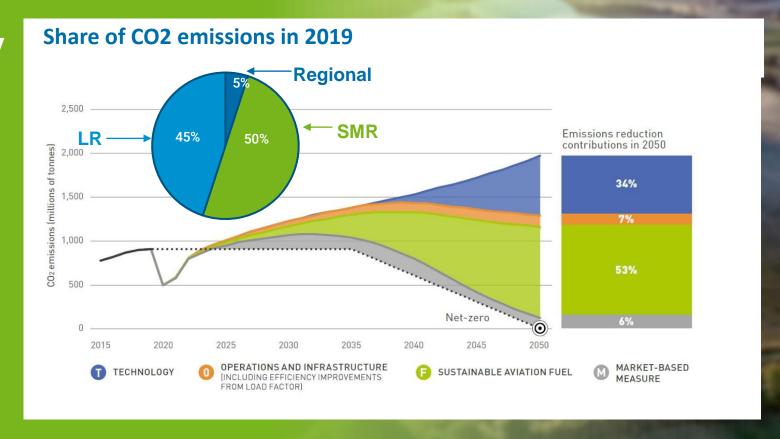
Towards a Net Zero society by 2050!

European commitment to climate neutrality



Climate impact is NOT ONLY about CO₂

GLOBAL AVIATION EFFECTIVE RADIATIVE FORCING (ERF) TERMS (1940 TO 2018)


NET AVIATION (ALL ITEMS)

Source: Lee et al. (2020)

Technology & SAF (PtL & H₂) together will trigger disruption

PtL SAF and H2 vs kerosene

	CO ₂	onmental IM NOx	PACT Contrails	Cost Fuel price Aircraft & from 2035 Airports	Sust. Energy Demand
PtL SAF	Net 0		•		1
H2 Direct burn	0		?	+ •	•
H2 Fuel Cell	0	0	?	• •	

Clean Aviation stands for disruptive technologies & innovations

Short Medium Range aircraft concept

-30%

GhG reduction

Aircraft Entry into Service

2035

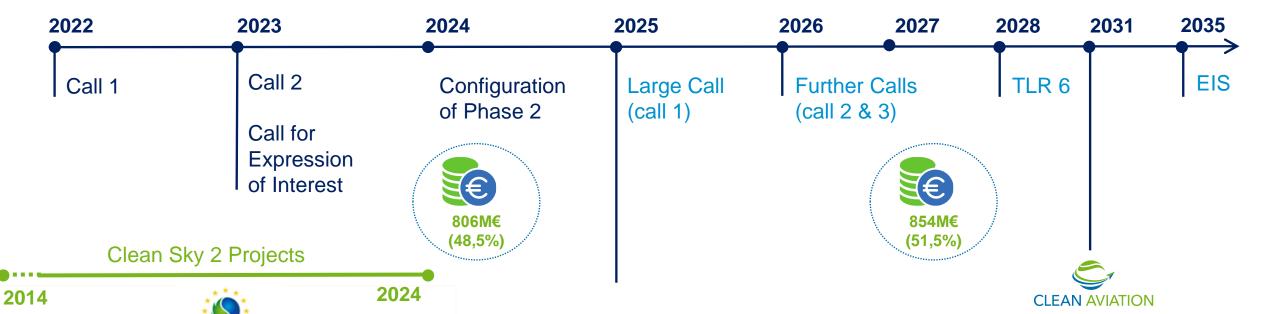
75%

Fleet replacement by 2050

Exploiting

Synergies

within Europe


Clean Aviation: 2 Phases

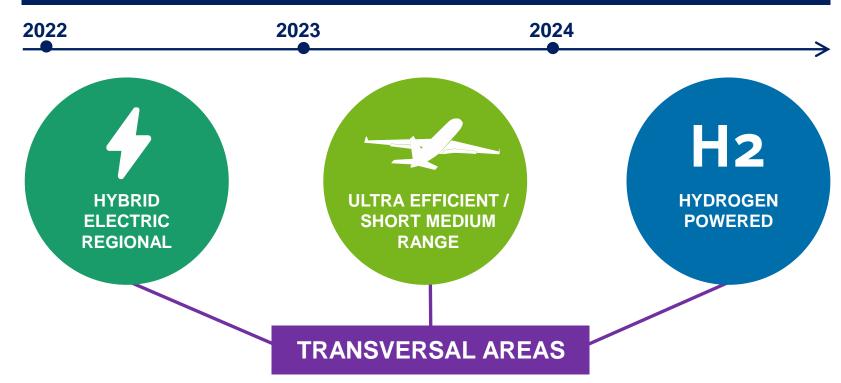
Phase 1: Develop **concepts**, **technology options** and **trade studies**

Clean Sku 2

Phase 2: Accelerate technology maturation through integrated demonstration

Clean Sky 2 Achievements (1/2)

Clean Sky 2 Achievements (2/2)



Clean Aviation: 3 thrusts

Driving
Efficiency
&
Emission
Reduction

HERA Clean Aviation concepts

2024 TRL4 by

CERTIFICATION &

DIGITALIZATION

concertø

PROPULSION

AMBER

NEWBORN

WING

THEMA4HERA

HECATE

LH2 STORAGE

H2ELIOS

SMR ACAP Clean Aviation concepts

TRL3 by 2024 TRL4 by 2026

TRL2 by 2024 TRL3 by 2026

PROPULSION

HEAVEN

SWITCH

OFELIA

CAVENDISH

HYDEA

CERTIFICATION

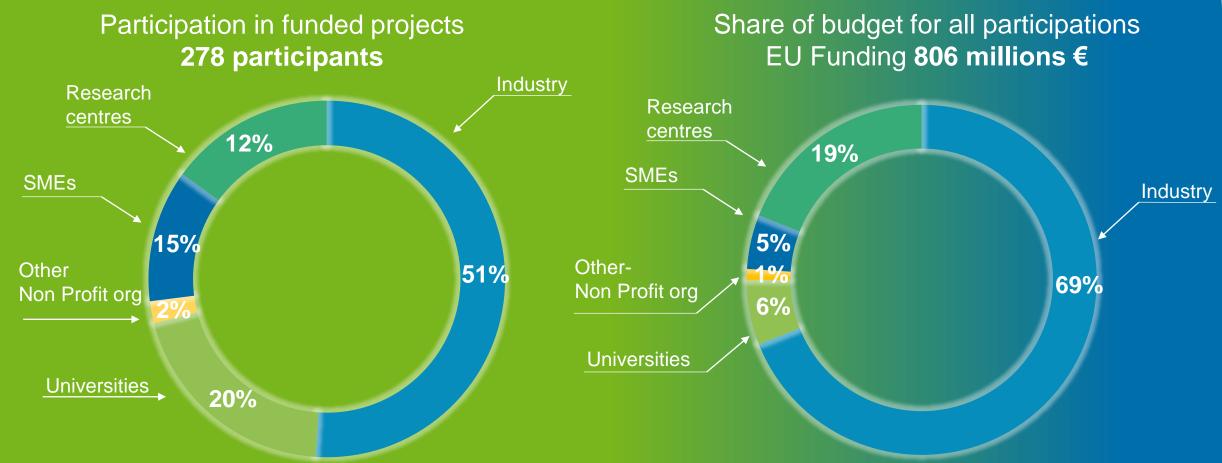
WING

UPWING

FASTER H2

H2ELIOS

LH2 STORAGE


FUSELAGE

12

Participation in Clean Aviation Call 1 & 2

Combining Innovative Airframe, Novel Systems & HE power train

HE-ART

2.150-2.850 MW Multi Hybrid Electric propulsion system for regional AiRcrafT

ROLLS-ROYCE (*)

AMBER

2250 MW Multi Power train InnovAtive for hyBrid-Electric Regional Application GE AVIO (*)

TheMa4HERA

Thermal Management Solutions for Hybrid Electric Regional Aircraft

HONEYWELL (*)

HECATE

Electrical Distribution Solutions for Hybrid-Electric Regional Aircraft

COLLINS (*)

HERWINGT

Hybrid Electric Regional Wing Integration Novel Green Technologies

AIRBUS (*)

Ultra Efficient / Short Medium Range

Combined powerplant & Airframe efficiency

HEAVEN

Ultrafan - Hydrogen & hybrid gas turbine design

ROLLS-ROYCE (*)

SWITCH

Sustainable Water-Enhanced-Turbofan (WET) Comprising Hybrid-electrics

MTU AERO ENGINES (*)

OFELIA

Open fan engine demonstrator incl. gas turbine design hybridisation for Environmental Low Impact of Aviation SAFRAN (*)

UP WING

Ultra performance wing AIRBUS (*)

FASTER-H2

Fuselage H2 integration & Ultra efficient empennage AIRBUS (*)

Hydrogen Powered Aircraft

Novel concepts with H2 direct burn & fuel cell based propulsion

CAVENDISH

Consortium for the AdVent of aero-Engine Demonstration and aircraft Integration

ROLLS-ROYCE (*)

HYDEA

HYdrogen DEmonstrator for Aviation

GE AVIO (*)

NEWBORN

NExt generation high poWer fuel cells for airBORNe applications

HONEYWELL (*)

H2ELIOS

HydrogEn Lightweight & Innovative tank for zerO-emisSion aircraft

ACITURRI (*)

FLHYing Tank

HydrogEn Lightweight & Innovative tank for zerO-emisSion aircraft

PIPISTREL (*)

HYPoTrade

Hydrogen Fuel Cell Electric Power Train Demonstration

PIPISTREL (*)

Transversal projects

CONCERTO

Construction Of Novel CERTification methOds and means of compliance for disruptive technologies

DASSAULT (*)

HERA

Hybrid-Electric Regional Aircraft Architecture and technology integration

LEONARDO (*)

SMR ACAP

SMR Aircraft architecture and technology integration Project

AIRBUS (*)

ECARE

European Clean Aviation Regional Ecosystem/synergies with regions

	HYBRID ELECTRIC		ULTRA EFFICIENT/ SHORT MEDIUM RANGE		HYDROGEN POWERED AIRCRAFT
3	HERFUSE Hybrid-Electric Regional FUSelage & Empennages LEONARDO	*	COMPANION Common Platform and Advanced INstrumentation Readlness for ultra efficient propulsion demonstration AIRBUS	H2	TROPHY Technological Research On Propulsion by HYdrogen SAFRAN
濼	Open Digital Environment for Hybrid-Electric Regional Architectures DLR (DEUTSCHES ZENTRUM FUR LUFT – UND RAUMFAHRT)		AWATAR Advanced Wing MATuration And integration ONERA (OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES)	H2	FAME Fuel cell propulsion system for Aircraft Megawatt Engines AIRBUS HEROPS Hydrogen-Electric ZeRo Emission Propulsion System MTU AERO ENGINES AG

SUPPORT ACTION

CLAIM

Clean Aviation Support for Impact Monitoring DLR (DEUTSCHES ZENTRUM FUR LUFT – UND RAUMFAHRT)

Skip-a-Generation technology leap

- Keep pushing the envelope >

 'traditional' aeronautical sciences
- Non-traditional sciences > key enablers
- Replacing ~75% of the global fleet by 2050
- Simulation, digital twin and innovative certification
- Life-cycle aspects and recyclability

3 key action areas to enable the transformation

- Develop and demonstrate new technologies
- Shorten aircraft design cycles
- Accelerate new aircraft adoption

- Implement appropriate ATM
- Ensure duel fuel infrastructure
- Enable new network strategies

- Boost hydrogen production (for PtL & LH2)
- Provide sufficient renewable electricity

Thank you

www.clean-aviation.eu

Follow us in

