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But open issues to be further studied:
▪ Complex physics require high-fidelity (CFD) simulations, computational cost must be taken into 

account
▪ Efficient investigation of a large design space
▪ accuracy of the model when reduced number of samples
▪ efficient constraints handling

Deep assessment of SBGO methods for 

aerodynamic shape optimization

Application-driven EU collaborative research

SBGO methods in aerodynamic shape design:

▪ broad design space exploration

▪ high potential to find the global optimum
▪ inherent parallelization
▪ independence from initial configuration 
▪ feasibility in MDO, complementary to adjoint
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ح Provision of “best practice” guidelines for the industrial use of SBGO methods in

shape optimization

ح Simplification of the use of SBGO methods in aeronautic industries

ح Assessment of surrogate modeling techniques for fast computation of the fitness

function

ح Assessment of surrogate-based global optimization strategies for shape design

ح Evaluation of DoE techniques given a certain geometry parameterization. Analysis

of the cost/accuracy trade-off for different DoE plans and strategies

ح Demonstration of the applicability and CPU time savings by the use of surrogate-

based global optimization
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Assessment vs. Design exercise



ح Model validation strategies, assessment of the overall computational time required

to build and train the surrogate

ح Assessment of the proper error metrics for comparison (RMSE, ME ....)

ح Handling constraints with surrogates, possible formulations of constraints

ح Accuracy of the model on large database (more than 200 samples)

ح Improvement of surrogate accuracy at fixed computational budget

ح Efficient DoE techniques, adaptive DoE strategies for “optimal” selection of training

points towards validation error mitigation

ح Deal with the “curse of dimensionality”. Assessment of the surrogate modeling 

techniques to deal with high dimensionality problems (n>10)
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ح 9 organizations from 5 GARTEUR state 

members (ESP, FRA, ITA, SWE, UK) and 1

non-GARTEUR country (CZE)

ح 2 industries (AIRBUS Military, SAAB)

ح 4 research establishments (INTA, CIRA, 

FOI, ONERA) 

ح 3 universities (UAH, UNIS, VUT)

ح Chairmanship: INTA (Esther Andrés)

ح Vice-chairmanship: CIRA (Emiliano Iuliano)

ح Monitoring Responsible: Fernando Monge, INTA
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ح An upper limit in the computational effort was

agreed for sampling the design space and training

the surrogate in terms of high-fidelity CFD runs

(5xDV)

ح Each partner was free to decide how to sample

the design space (DoE)

ح Once the surrogate was trained, the validation

plan was performed

ح The selected validation strategy was a 10-fold

cross validation.

ح Each partner provided two values at each point

of the validation dataset: the high-fidelity &

surrogate prediction (different solvers)

ح Error metrics were derived and a final

comparison was made to assess each surrogate.

SURROGATE VALIDATION

Validation 
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Common Inputs
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Constraints, …
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Optimization method

OPTIMIZATION COMPARISON

ح Each partner applied its own optimization

method coupled with the shared tools

(parameterization, mesh, ….) and his own

surrogate model

ح It was up to each partner to decide

whether to update the surrogate during the

optimization, but the number of additional

CFD computations to update the model was

fixed a priori

ح The optimal candidates obtained by

each partner were evaluated by a single

partner (TC coordinator) in order to fairly

compare the results of the optimization
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solver
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COMPARISON:

▪ INTA/UAH, SVM model with mixed a-priori (4 samples) / adaptive sampling (66 samples) 

using the Intelligent Estimation Search with Sequential Learning (IES-SL) infill criteria

▪ ONERA, Kriging model with a-priori LHS sampling

▪ VUT, ANN model (12 LHS + 58 LOLA-Voronoi ) with mixed a-priori (12 samples) / adaptive 

(58 samples) LOLA-Voronoi sampling

▪ CIRA, POD/RBF model with mixed a-priori (24 samples) / adaptive (46 samples) sampling 

through ad-hoc in-fill criteria

▪ CIRA, Kriging model with mixed a-priori (24 samples) / adaptive (46 samples) sampling 

through Expected Improvement maximization

▪ UNIS, Gaussian Process + Radial Basis Function Network ensemble with a-priori samples
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RAE 2822 Test Case: Approx. vs true obj. function correlation plot

CIRA POD data
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Objective Function

RAE2822 1

CIRA-POD 0.6266

CIRA-EGO 0.6236

INTA/UAH 0.6211

ONERA 0.6498

UNIS 0.6338

VUT 0.7063

Cross-validation of the optimized geometries 

(using TAU and ZEN, 3 mesh levels)
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The following surrogate models have been tested:
• Kriging

• Support Vector Machines for Regression

• Radial Basis Functions

• Proper Orthogonal Decomposition

• Artificial Neural Networks

• Ensemble methods

1. The accuracy of the surrogate models strongly depends on the sampling and the 

objective of the surrogate: 
• If the objective is to provide general predictions, an a-priori LHS sampling in combination or not 

with Lola-Voronoi sampling seems to be a good option (as concluded from VUT, UNIS and 

ONERA results). 

• If the objective is to better predict those regions of the design space where the optimum is 

located, then a mixed a-priori and adaptive sampling is recommended, as can be concluded 

from INTA and CIRA results. 
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Consult the complete AG52 report

2. Best results were achieved by the adaptive Kriging and SVMr optimization 

approaches. Ensemble methods showed poor performance on the performed tests, 

probably due to a not optimal sampling for the training phase.

3. Surrogate-based global optimization has been demonstrated to be feasible for 

aerodynamic design in case of high number of design variables (tested on 36 DVs). 

4. The selection of the number and location of the control points in a volumetric 
NURBS parameterization (design parameters) is a crucial step, and strongly 

determines the range of solutions and performance of the optimization algorithm. In 

particular, for the RAE 2822 case, the improvement in the OF was 15% higher when 

using an appropriate number of control points



ح ECFD 2014: ECCOMAS European Conference on 

Computational Fluid Dynamics. July 2014, Barcelona 
(Spain). http://www.wccm-eccm-

ecfd2014.org/frontal/Dates.asp

Organization of 4 Minisymposiums:
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ح EUROGEN 2013: International Conference on 

Evolutionary and Deterministic Methods for Design, 
Optimization and Control. 7-9 October 2013, Las 
Palmas de Gran Canaria (Spain). 
http://www.eurogen2013.ulpgc.es/

http://www.wccm-eccm-ecfd2014.org/frontal/Dates.asp
http://www.eurogen2013.ulpgc.es/
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ح ECFD 2016: ECCOMAS European 

Conference on Computational Fluid 

Dynamics. June 5-10, Greece

ح EUROGEN 2017: International 

Conference on Evolutionary and 

Deterministic Methods for Design, 

Optimization and Control. September 

2017, Madrid (Spain). 

http://eurogen2017.etsiae.upm.es

http://eurogen2017.etsiae.upm.es/
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Participation (full papers) at:

EUROGEN 2013, 2015, 2017
ECCOMAS 2014, 2016
EUCASS 2015
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Emiliano Iuliano, Esther Andrés. Application of 

surrogate-based global optimization to 

aerodynamic design. Springer Tracts in 

Mechanical Engineering. ISBN 978-3-319-

21505- 1. 2016. 

Esther Andrés, Leo González, Jaques Periaux, 

Nicolas Gauger, Domenico Quagliarella, 

Kyriakos Giannakoglou. Evolutionary and 

Deterministic Methods for Design Optimization 

and Control With Applications to Industrial and 

Societal Problems. Springer Computational 

Methods in Applied Sciences. ISBN 978-3-

319-89890-2. January 2019. 
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Machine learning and data-driven approaches for 

aerodynamic analysis and uncertainty quantification 

(Acronym: ML4AERO)



ML4AERO main objective:

Machine learning techniques commonly used in the area of Artificial Intelligence (AI) and Data Mining (DM) can
represent a valuable support to reduce the computational cost required for UQ analysis: given the big amount of data

produced during optimization under uncertainty, the adoption of data-driven models and their continuous updating may help

to save computational time in later design stages.

The objective of this proposal is to research in the application of machine learning and data-driven approaches for 

aerodynamic optimization and uncertainty quantification.

EG77 delivered the full AG proposal on March 2020

Duration:

▪ AG Kick-off (webex): November 2020

▪ End date: November 2022

Chairpersons:

▪ Chairperson: Esther Andrés (INTA)

▪ Vice-Chair: Emiliano Iuliano (CIRA) → Emiliano will leave CIRA, probably Domenico Quagliarella (to be confirmed)

▪ Monitoring Responsable: Fernando Monge (INTA)



ML4AERO partners:

Most of the partners in this proposal (INTA, CIRA, ONERA and

AIRBUS-Military) have previous experience in the surrogate

modelling field. In particular, they contributed to a previous

GARTEUR AD/AG52.

❑ 12 organizations from 6 GARTEUR state 

members (ESP, FRA, DEU, ITA, NLD, SWE)

❑ 2 industries (AIRBUS D&S and AIRBUS) and 

1 SME (OPTIMAD)

❑ 9 research establishments (CIRA, NLR, UT, 

INTA, DLR, FOI, ONERA, IRT and INRIA) 



Objectives:

❑ O1: Extensive comparison of deep learning, surrogate models and machine learning techniques →
for prediction (Cp plots, etc.) 

❑ O2: Exploit the potential of data fusion (Multi-fidelity). Heterogeneous data from different sources (CFD 
with different precision, wind-tunnel, flight test data, etc.)

❑ O3: Uncertainty quantification and management 

o Explore different techniques (e.g. clustering, 
dimensionality reduction, neural networks, SVM, deep 
learning, etc.) on big datasets (e.g., flow fields, 
past/ongoing optimization data,…) for knowledge 
extraction & prediction

o Main focus not on techniques, but rather on which data 
should be fed to ML to really improve the whole process 
performance



Use of common test cases and data bases to be provided 
by AIRBUS: 
❑ TC1:     XRF1 geometry + CFD + wind tunnel data (Airbus 

will support the EG77 application as a part of XRF1 research 
consortium).

❑ TC2:     Large database of approx. 7000 aircraft points 
(simulated with RapidCFD) representing different aircraft 
configurations for internal use on AI/DL topics based on 
Airbus internal geometries (including geometry variations). It 
is possible that an equivalent database based on geometry 
of lower sensitivity could be created and provided →
parameterization could be also provided.

Link between objectives and test cases:

❑ O2 and O3 will use TC1
❑ O1 and O3 will use TC2 (maybe also O2 if XRF1 is included 

in TC2, or if the group runs extra CFD RANS simulations)

The Airbus XRF-1 configuration will be
used as the reference geometry to
demonstrate the capabilities of the
machine learning in a realistic
application. This figure shows the XRF1
geometry as a wing/fuselage/tail
configuration.

Source: DLR project Kroll, N., Abu-Zurayk, M.,
Dimitrov, D. et al. Digital-X: towards virtual
aircraft design and flight testing based on high-
fidelity methods. CEAS Aeronaut J (2016) 7: 3.



Technical Details:



Proposal info.:

PM distribution by country (note that AIRBUS has been included 

in Spain effort, although it is a European Consortium)

PM distribution by sector
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